CLOCQ: A Toolkit for Fast and Easy Access to Knowledge Bases

Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum

Presenter: Magdalena Kaiser
KBSs provide vast amounts of information

Curated **knowledge bases** (KB) have
- Billions of facts
- Millions of entities
- Thousands of relations
- Multiple terabytes of data

★ KBs provide **vast amounts of factual information**
★ **Empower** everyday **applications**
Curated Knowledge Base (KB)

Set of facts [subject, predicate, object]

- [2018 FIFA World Cup Final, instance of, FIFA World Cup Final]
- [2018 FIFA World Cup Final, location, Luzhniki Stadium]
- [2018 FIFA World Cup Final, point in time, 15 July 2018]

⇒ Expressing **factual world knowledge**, in a **structured** way
Curated Knowledge Base (KB)

Set of facts [subject, predicate, object]

- [2018 FIFA World Cup Final, instance of, FIFA World Cup Final]
- [2018 FIFA World Cup Final, location, Luzhniki Stadium]
- [2018 FIFA World Cup Final, point in time, 15 July 2018]

⇒ Expressing **factual world knowledge**, in a **structured** way
Curated Knowledge Base (KB)

Set of facts [subject, predicate, object]

- [2018 FIFA World Cup Final, instance of, FIFA World Cup Final]
- [2018 FIFA World Cup Final, location, Luzhniki Stadium]
- [2018 FIFA World Cup Final, point in time, 15 July 2018]

⇒ Expressing **factual world knowledge**, in a **structured** way
Curated Knowledge Base (KB)

Set of facts [subject, predicate, object]

[2018 FIFA World Cup Final, instance of, FIFA World Cup Final]
[2018 FIFA World Cup Final, location, Luzhniki Stadium]
[2018 FIFA World Cup Final, point in time, 15 July 2018]
...

⇒ Expressing factual world knowledge, in a structured way
Curated Knowledge Base (KB)

Set of facts [subject, predicate, object]

- [2018 FIFA World Cup Final, instance of, FIFA World Cup Final]
- [2018 FIFA World Cup Final, location, Luzhniki Stadium]
- [2018 FIFA World Cup Final, point in time, 15 July 2018]
- [2018 FIFA World Cup Final, goal scored by, Mario Mandžukić]

Important **information missing:**
- This was an **own goal**
- The **minute** the goal was scored in (18 minute)
- The **way** the goal was scored (header)
Curated Knowledge Base (KB)

Set of facts [subject, predicate, object, qualifiers(optional)]

<table>
<thead>
<tr>
<th>Subject</th>
<th>Predicate</th>
<th>Object</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 FIFA World Cup Final</td>
<td>instance of</td>
<td>FIFA World Cup Final</td>
<td></td>
</tr>
<tr>
<td>2018 FIFA World Cup Final</td>
<td>location</td>
<td>Luzhniki Stadium</td>
<td></td>
</tr>
<tr>
<td>2018 FIFA World Cup Final</td>
<td>point in time</td>
<td>15 July 2018</td>
<td></td>
</tr>
<tr>
<td>2018 FIFA World Cup Final</td>
<td>goal scored by</td>
<td>Mario Mandžukić</td>
<td>(match time, 18 minute), (score method, head), (score method, own goal)</td>
</tr>
</tbody>
</table>

⇒ Expressing **factual information**, in a **structured** way
⇒ KB facts often need to go **beyond triples**
⇒ Expressing **n-ary relationships** using **qualifiers**: (qualifier-predicate, qualifier-object) pairs
Limitations of existing KB interfaces

Existing KB interfaces allow general-purpose access to KBs via queries (e.g., SPARQL)
☆ Not designed for integrating qualifiers
☆ KB as set of triples, integrating qualifiers via reification
 ⇒ Expensive querying and post-hoc processing
☆ Access requires deep knowledge and understanding of KB schema

⇒ A lot of time needs to be invested until first usage
Fast Access

- Propose to take a **fact-centric view of KBs** (vs. triple-centric)

- Implement **fact-centric KB index**
 - Directly **store** the whole fact, including the **corresponding qualifiers**
 - Establish **index** that **stores all facts** with a certain **KB entity** (or relation)

- Enables (more) **efficient implementation** of core **KB functionalities**, e.g.
 - **KB neighborhood**: simple look-up
 - **KB distance**: implemented via intersection of neighborhoods
Easy Access

★ Establish intuitive definitions for vaguely defined concepts:
 ⇒ KB represented as a graph (knowledge graph)
 ⇒ KB neighborhood
 ⇒ KB distance
 ⇒ Shortest path between KB items

★ Provide public API to conveniently access Wikidata
 https://clocq.mpi-inf.mpg.de

★ Open source code available at same URL
KB functionalities

Direct lookups
⇒ Label, aliases, description, types, most frequent type

More complex functionalities
⇒ 1-hop neighborhood of KB item
⇒ Frequency of KB item
⇒ Connectivity / shortest path between two KB items

Search space reduction and linking
⇒ Retrieve relevant KB facts for input text (e.g., question)
⇒ Identify KB entities in input text
⇒ Identify KB relations in input text
Conclusion

★ Propose to take a **fact-centric view** on KBs
★ Establish **intuitive definitions** for **salient concepts**
★ Construct **fact-centric KB interface**
★ **Improve runtime** for **core KB functionalities**
 over triple-centric KB interfaces (factor of up to 10^5)

Enhance accessibility to large-scale KBs for research
⇒ Public **code** toolkit
⇒ **Open API** to access **Wikidata**
⇒ >19,000,000 **external API calls** so far

Thank you!

https://clocq.mpi-inf.mpg.de
Question Answering (QA) over KBs

Who scored an own goal in the 2018 final between France and Croatia?

Who wrote Harry Potter?

QA System

Mario Mandžukić

J. K. Rowling

User

User
Other example use cases of KBs

Entity ranking in search engines [1]
⇒ For queries like “2018 wc final”

Named entity recognition and disambiguation (NERD) [2]
⇒ Canonicalize entity mentions in texts

Information and statistics extracted from KB
★ **Distance** between **KB entities** as proxy of semantic similarity [3]
★ **Frequency** of **entity** as a measure for its popularity [4]
★ **KB ontology** (type system) for relation extraction [5] or answer verification [6]

Runtime experiments

Functionalities
- ★ 1-hop neighborhood (item)
- ★ Frequency (item)
- ★ Connectivity (item1, item2)
- ★ Shortest path (item1, item2)

⇒ **10,000** randomly sampled **items / item pairs**

Baselines
- ☆ HDT [1]: Efficient **triple lookups** using bitmap encodings
- ☆ QueryService [2]: Publicly available **SPARQL query** interface for Wikidata

Experimental results

CLOCQ improves runtime by factor of up to 10^5