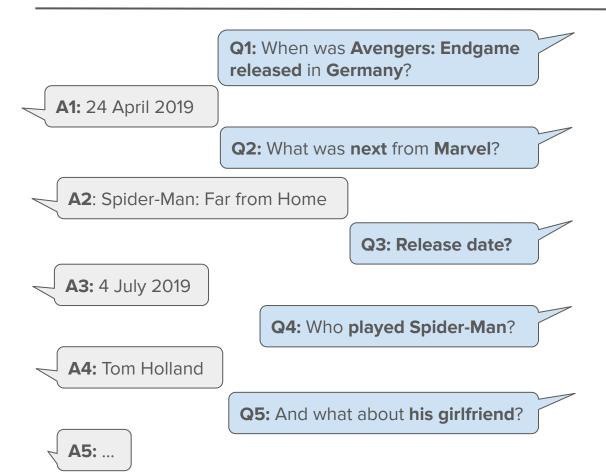
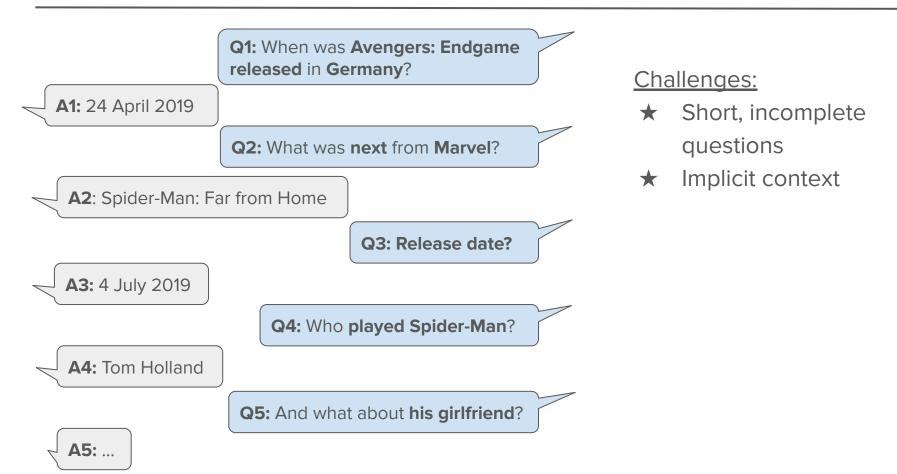
Reinforcement Learning from Reformulations in Conversational Question Answering over Knowledge Graphs

Magdalena Kaiser, Rishiraj Saha Roy and Gerhard Weikum Max Planck Institute for Informatics, Saarbrücken, Germany

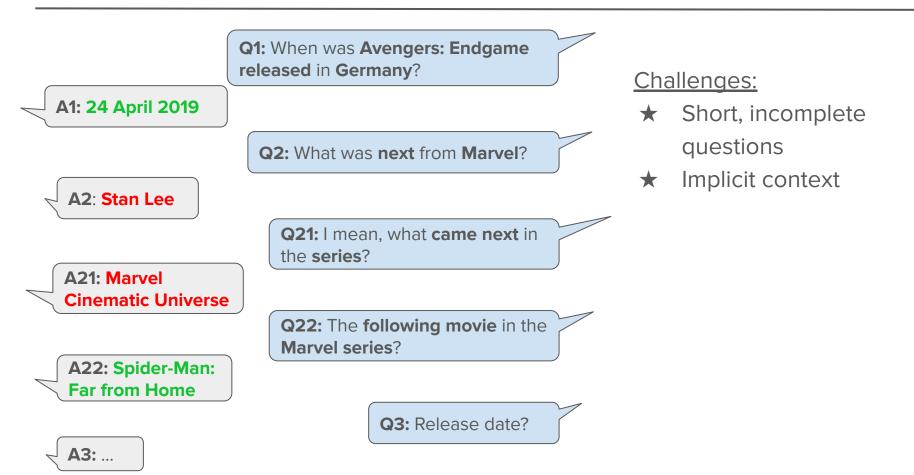
Ideal Conversation



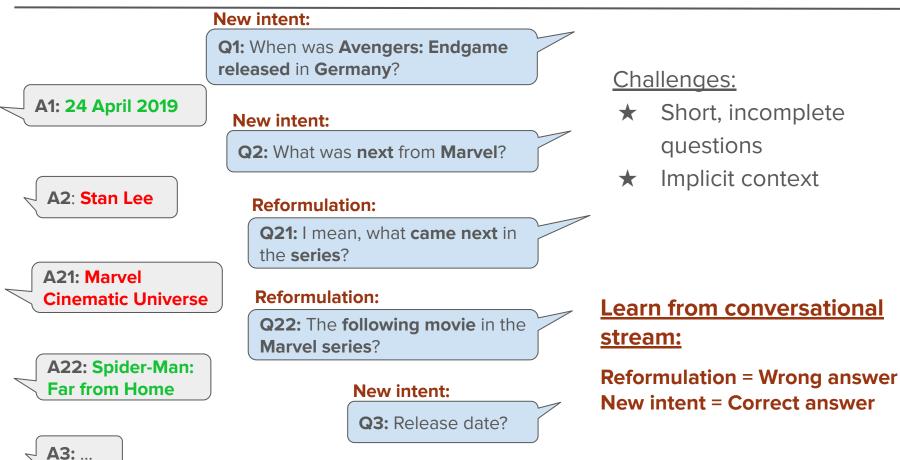
Ideal Conversation



Realistic Conversation



Realistic Conversation

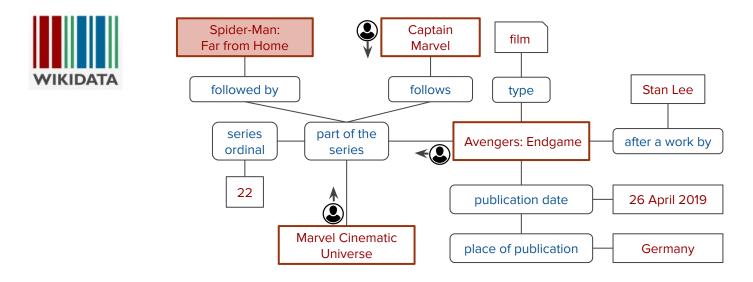


★ CONQUER: Reinforcement learning model for QA

- Learns from **conversational stream** in the **absence of gold answers**
- With **rewards** based on **implicit feedback** in form of question **reformulations**
- ★ Reformulation predictor based on BERT that can classify a follow-up utterance as a reformulation or new intent
- ★ ConvRef: ConvQA benchmark with reformulations

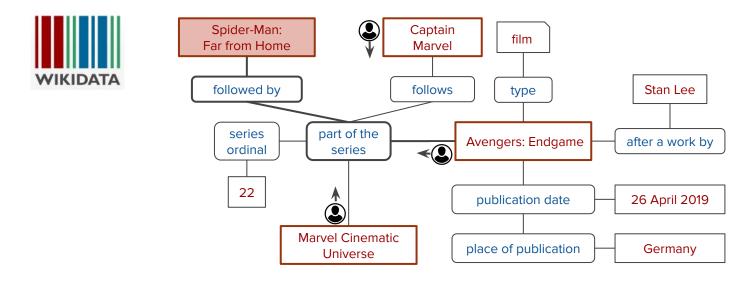
Basic Idea

Q1: When was **Avengers: Endgame** released in Germany? A1: 24 April 2019 Q2: What was next from **Marvel**?



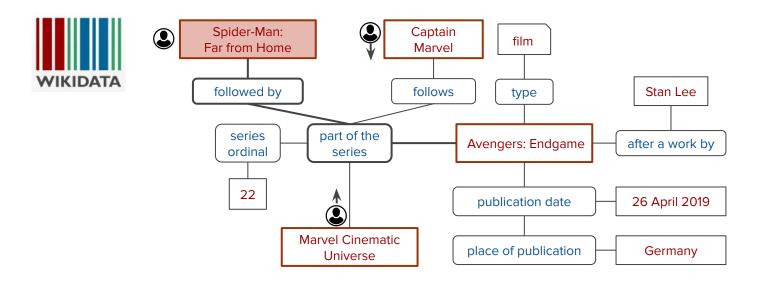
Basic Idea

Q1: When was **Avengers: Endgame** released in Germany? A1: 24 April 2019 Q2: What was next from **Marvel**?



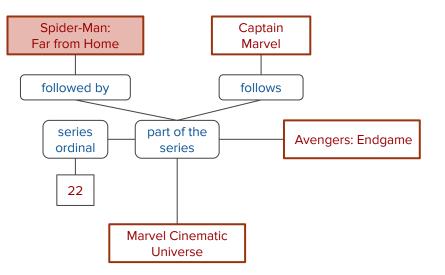
Basic Idea

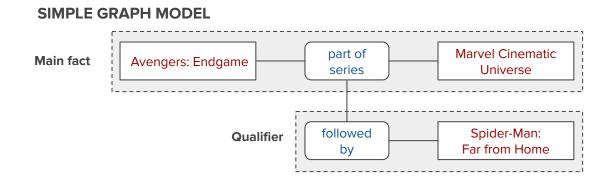
Q1: When was **Avengers: Endgame** released in Germany? A1: 24 April 2019 Q2: What was next from **Marvel**?

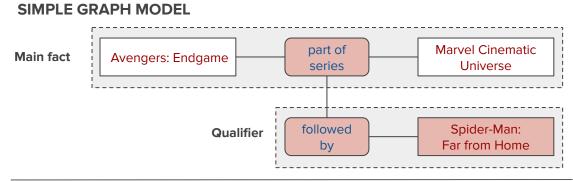


N-ary facts connected via statement-ids:

- <AvengersEndgame, partOfSeries, 123>
- <123, partOfSeries, MarvelCinematicUniverse>
- <123, followedBy, SpiderManFarFromHome>
- <123, follows, CaptainMarvel>
- <123, seriesOrdinal, 22>





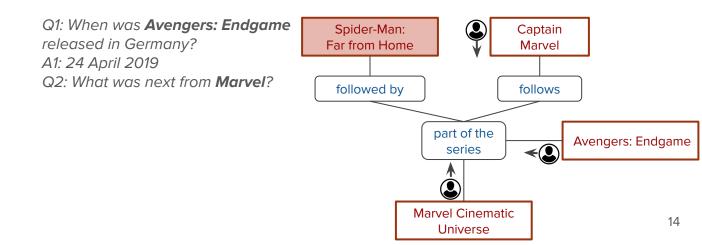


CONQUER GRAPH MODEL

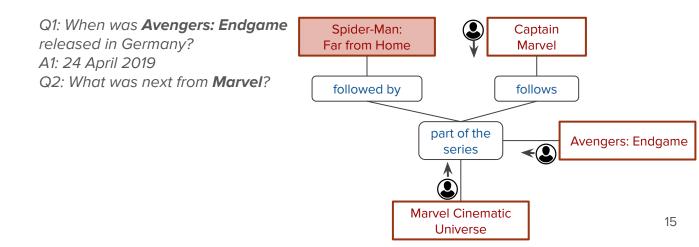
SIMPLE GRAPH MODEL Main fact Avengers: Endgame part of series Marvel Cinematic Universe Gualifier followed by Far from Home

CONQUER GRAPH MODEL

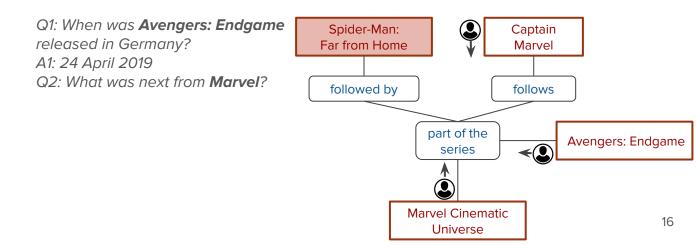
★ Find entities relevant to current question and its conversational context



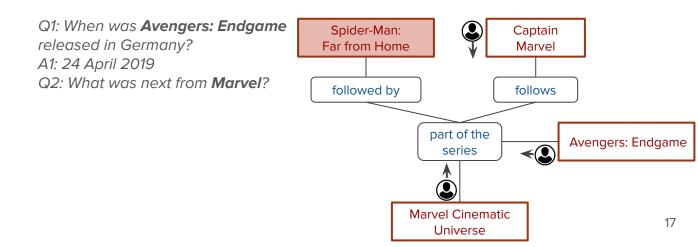
- ★ Find entities relevant to current question and its conversational context
- ★ Context entities will be start points for the RL walk



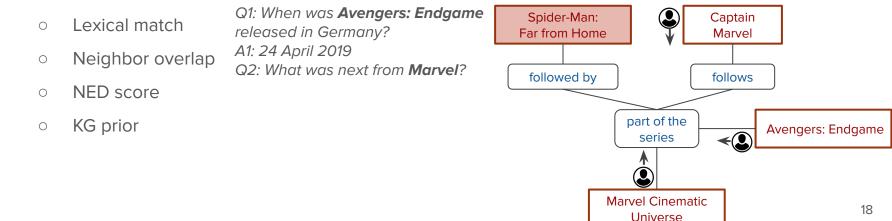
- ★ Find entities relevant to current question and its conversational context
- ★ Context entities will be start points for the RL walk
- ★ NED tools do **not work** well on **short, incomplete questions**



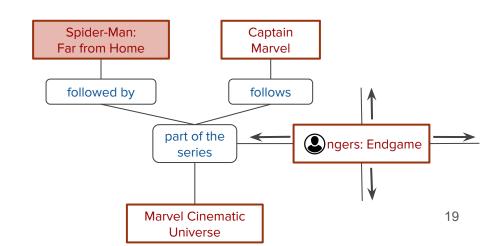
- ★ Find entities relevant to current question and its conversational context
- ★ Context entities will be start points for the RL walk
- ★ NED tools do **not work** well on **short, incomplete questions**
- ★ Get initial entities from first complete question via NED tool



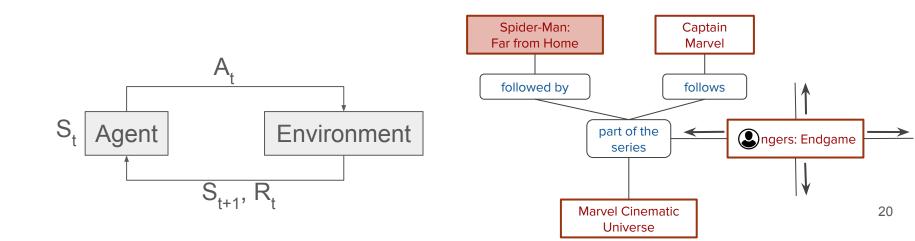
- ★ Find entities relevant to current question and its conversational context
- ★ Context entities will be start points for the RL walk
- ★ NED tools do **not work** well on **short, incomplete questions**
- ★ Get initial entities from first complete question via NED tool
- ★ Score one hop neighborhood of current context nodes:



Step 2: Path Prediction

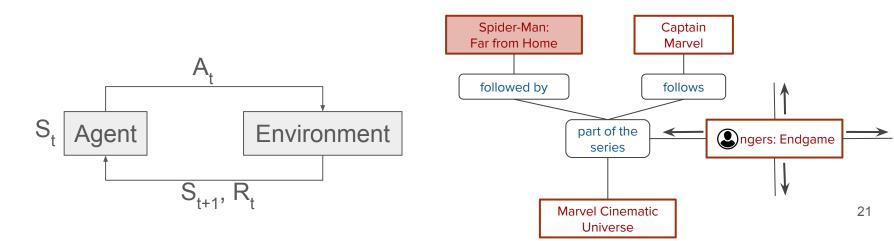


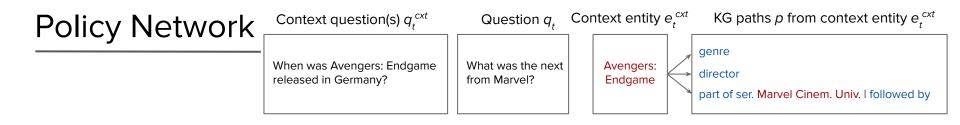
Step 2: Path Prediction

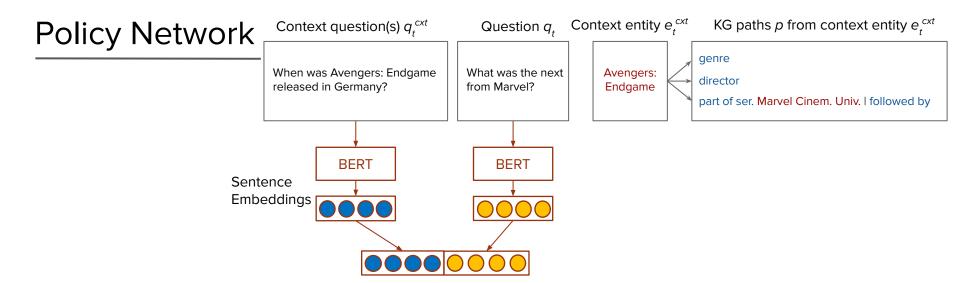


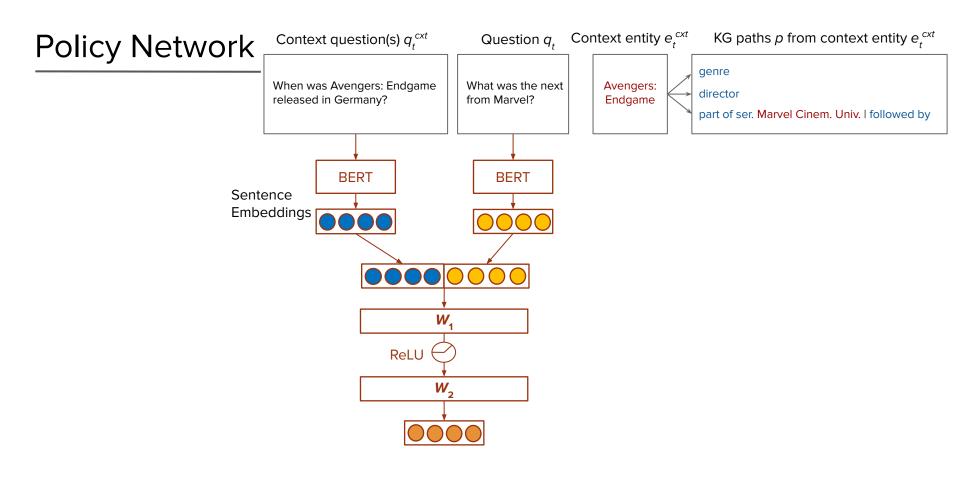
Step 2: Path Prediction

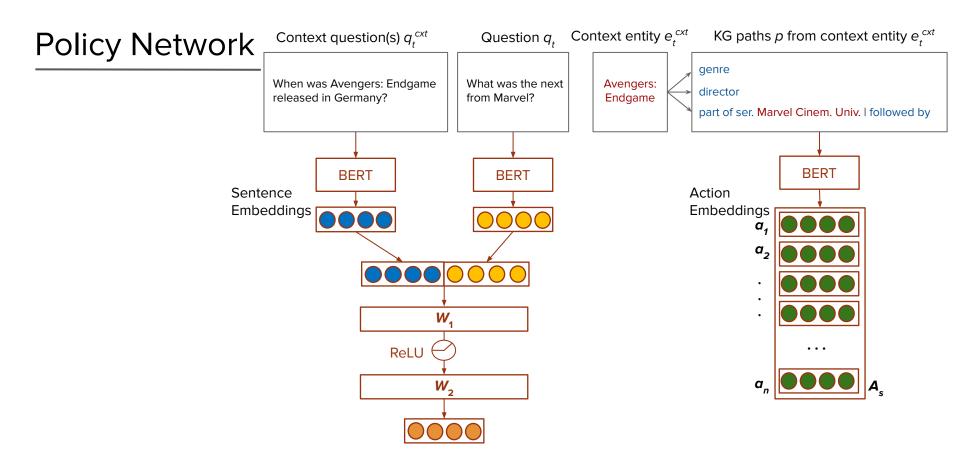
- ★ States: current question, context entity, conversation history (optional)
- ★ Actions: all outgoing paths from the context entity node
- ★ Transitions: entity reached when following selected action, follow-up question, updated conversation history
- ★ **Rewards:** 1 if next question is a new info need, -1 if reformulation
- ★ **Policy:** determines which action to select in a given state

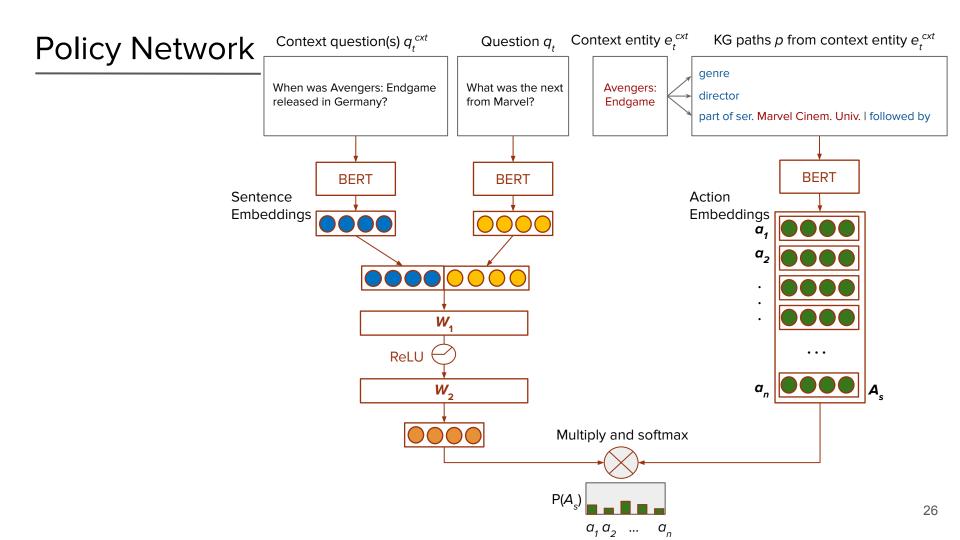


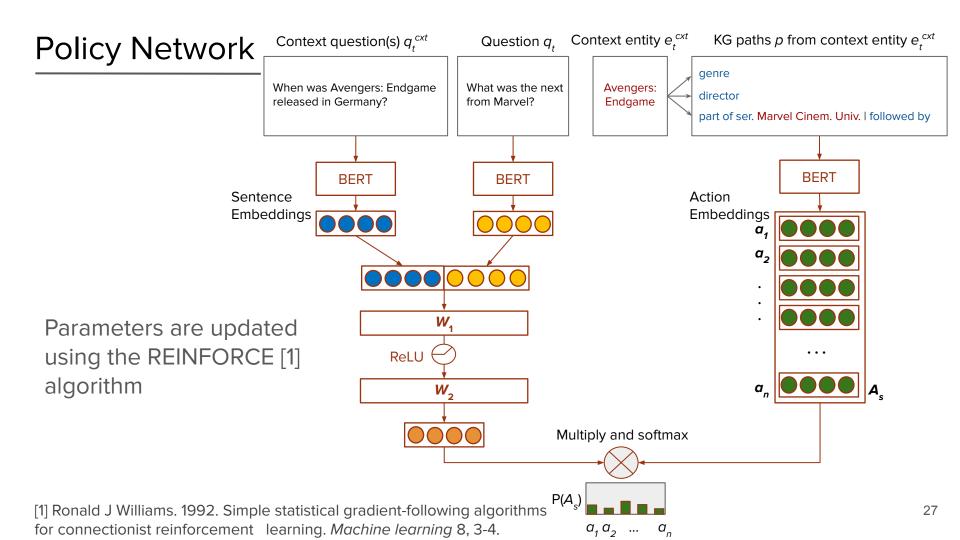










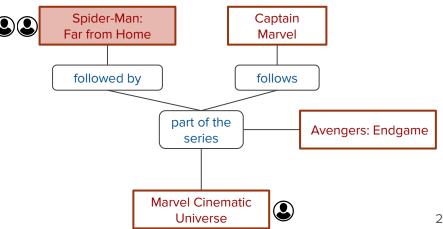


★ During **training**: **Sample** action

During training: Sample action \star

For **answering**: \star

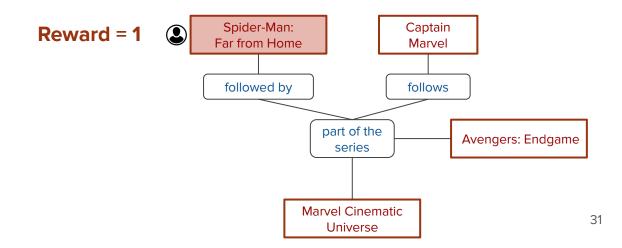
- Take top actions and rank them Ο
- Main ranking criterion: prediction score from policy network, boosted if several agents arrive Ο at same answer entity



★ Determines if two questions are reformulations of each other (reward = -1) or express different intents (reward = 1)

- ★ Determines if two questions are reformulations of each other (reward = -1) or express different intents (reward = 1)
- ★ Fine-tuned BERT-model

Q2: What was next from **Marvel**? A2: Spider-Man: Far from Home Q3: Release date?



★ Builds upon Conversational KG-QA dataset **ConvQuestions** [2]

[2] Philipp Christmann, Rishiraj Saha Roy, Abdalghani Abujabal, Jyotsna Singh, and Gerhard Weikum. 2019. Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. In CIKM.

32

- ★ Builds upon Conversational KG-QA dataset **ConvQuestions** [2]
- ★ Up to 4 reformulations per info need, around 205k reformulations in total

[2] Philipp Christmann, Rishiraj Saha Roy, Abdalghani Abujabal, Jyotsna Singh, and Gerhard Weikum. 2019. Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. In CIKM.

- ★ Builds upon Conversational KG-QA dataset **ConvQuestions** [2]
- ★ Up to 4 reformulations per info need, around 205k reformulations in total
- ★ Data collected in **user study** with 30 participants

34

- ★ Builds upon Conversational KG-QA dataset **ConvQuestions** [2]
- ★ Up to 4 reformulations per info need, around 205k reformulations in total
- ★ Data collected in **user study** with 30 participants
- ★ Interacted with baseline system

- ★ Builds upon Conversational KG-QA dataset **ConvQuestions** [2]
- ★ Up to 4 reformulations per info need, around 205k reformulations in total
- ★ Data collected in **user study** with 30 participants
- ★ Interacted with baseline system
- ★ Participants need to issue a reformulation based on the conversation history and the previously returned wrong answer: differ from simple paraphrases

[2] Philipp Christmann, Rishiraj Saha Roy, Abdalghani Abujabal, Jyotsna Singh, and Gerhard Weikum. 2019. Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. In CIKM.

ConvRef - Benchmark with Reformulations

Nature of reformulation	Percentage	Example
Words were replaced by synonyms	15%	"When was that released?" - "When was it out?"
Expected answer types were added	14%	"Who wrote the screenplay?" - "Name of person who wrote the screenplay?"
Coreferences were replaced by topic entity	24%	"What year did he play in the Summer Olympics?" - "When did Eddie Pope play in the Summer Olympics?"
Question was rephrased	71%	"Cause of death?" - "Why did Bob Marley die?"
Words were reordered	5%	"What year did Friends air?" - "Friends aired in year?"
Completed a partially implicit question	20%	"And what was his sports number there?" - "Number on jersey of Kylian Mbappe in 2018 FIFA world cup?"

 ★ Four different variations of the CONQUER model stemming from two sources of noise: reformulation predictor and user model

Experimental Configurations

- ★ Four different variations of the CONQUER model stemming from two sources of noise: reformulation predictor and user model
- ★ Ideal Reformulation Predictor:
 - Always decides correctly whether two questions are reformulations of each other
 - We know reformulations based on annotations in ConvRef

Experimental Configurations

★ Four different variations of the CONQUER model stemming from two sources of noise: reformulation predictor and user model

★ Ideal Reformulation Predictor:

- Always decides correctly whether two questions are reformulations of each other
- We know reformulations based on annotations in ConvRef

★ Noisy Reformulation Predictor:

- Fine-tuned BERT model
- Sometimes predictions are incorrect: reformulation is mistaken for new intent and vice versa

★ No access to users during training time, thus simulate users using the collected reformulations from ConvRef

★ No access to users during training time, thus simulate users using the collected reformulations from ConvRef

★ Ideal User Model:

- User behaves exactly as in our assumption: reformulates if presented answer was wrong, otherwise issues new question
- Simulated by looping through available reformulations in ConvRef

★ No access to users during training time, thus simulate users using the collected reformulations from ConvRef

★ Ideal User Model:

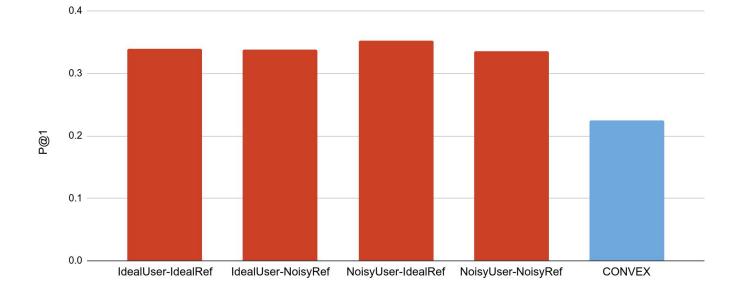
- User behaves exactly as in our assumption: reformulates if presented answer was wrong, otherwise issues new question
- Simulated by looping through available reformulations in ConvRef

★ Noisy User Model:

- User can also ask new question even though previous answer was wrong (e.g. out of frustration)
- If no further reformulation available in ConvRef we move to next info need regardless of whether answer was correct or not

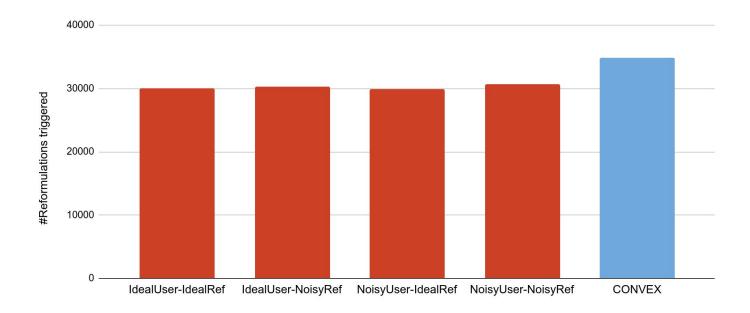
Main Results - CONQUER outperforms baseline

- ★ All CONQUER variants outperform baseline CONVEX [2]
- ★ **Performance** of CONQUER variants **similar** (best variant: NoisyUser-IdealRef)

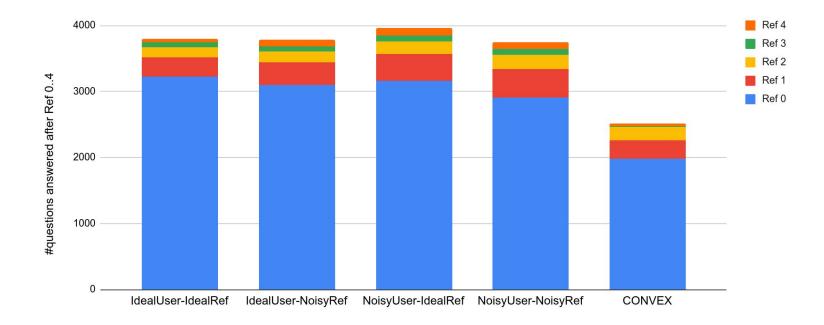


[2] Philipp Christmann, Rishiraj Saha Roy, Abdalghani Abujabal, Jyotsna Singh, and Gerhard Weikum. 2019. Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. In CIKM.

Main Results - CONQUER answers questions earlier



Main Results - CONQUER answers questions earlier



Method	Movies	TV Series	Music	Books	Soccer
IdealUser-IdealRef	0.320	0.316	0.281	0.449	0.329
IdealUser-NoisyRef	0.344	0.340	0.303	0.425	0.308
NoisyUser-IdealRef	0.368	0.367	0.324	0.413	0.329
NoisyUser-NoisyRef	0.327	0.296	0.300	0.381	0.327
CONVEX	0.274	0.188	0.195	0.224	0.244

Method	P@1	Hit@5	MRR
CONQUER (trained with gold labels)	0.263	0.343	0.298
CONVEX	0.184	0.219	0.200

Context Model	P@1	Hit@5	MRR
Curr. ques. + cxt. ent.	0.294	0.407	0.346
Curr. ques. + cxt. ent. + first ques.	0.254	0.370	0.305
Curr. ques. + cxt. ent. + first ques. + prev. ques.	0.257	0.370	0.307
Curr. ques. + cxt. ent. + first refs. + prev. refs.	0.262	0.382	0.316

Method	P@1	Hit@5	MRR
Path	0.294	0.407	0.346
Context entity + Path	0.293	0.408	0.346
Path + Answer entity	0.275	0.394	0.329
Context entity + Path + Answer entity	0.273	0.398	0.328

Method	P@1	Hit@5	MRR
Add scores	0.294	0.407	0.346
Max scores	0.294	0.406	0.344
Max scores (ties resolved with majority voting)	0.291	0.405	0.343
Majority voting (ties resolved with max score)	0.273	0.408	0.334

Performance of Reformulation Predictor

- ★ Fine-tuned BERT model:
 - **Positive** samples: **same intents** from **same conversation (reformulations)**
 - Negative samples: different intents from same conversation

Performance of Reformulation Predictor

★ Fine-tuned BERT model:

- **Positive** samples: **same intents** from **same conversation (reformulations)**
- Negative samples: different intents from same conversation

	Precision	Recall	F1
New Intent	0.986	0.944	0.965
Reformulation	0.810	0.948	0.873

Conclusion and Future Work

★ CONQUER model:

- **RL-based** method for conversational QA
- Leverages noisy implicit feedback coming from reformulations, learns from positive and negative feedback
- Robust to noise
- ★ Reformulation predictor
- ★ ConvRef: Benchmark with reformulations

Conclusion and Future Work

★ CONQUER model:

- **RL-based** method for conversational QA
- Leverages noisy implicit feedback coming from reformulations, learns from positive and negative feedback
- Robust to noise
- ★ Reformulation predictor
- ★ **ConvRef:** Benchmark with reformulations

Future work may include:

- ★ Improved modeling of conversational context
- ★ Context entity detection as part of neural model
- ★ Further **feedback signals**

Conclusion and Future Work

★ CONQUER model:

- **RL-based** method for conversational QA
- Leverages noisy implicit feedback coming from reformulations, learns from positive and negative feedback
- Robust to noise
- ★ Reformulation predictor
- ★ **ConvRef:** Benchmark with reformulations

Future work may include:

- ★ Improved modeling of conversational context
- ★ Context entity detection as part of neural model
- ★ Further **feedback signals**

Contact:	<u>mkaiser@mpi-inf.mpg.de,</u> @mag_kaiser 🔰
Benchmark+Demo:	https://conquer.mpi-inf.mpg.de
Code:	https://github.com/magkai/CONQUER