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PRAISE PIPELINE FOR CONVQA PRAISE TRAINING

 QU: question reformulations based on conv. history, 1. Create samples using initial pipeline (few-shot QU,
most beneficial for retrieval and answer generation retrieval-only ERF, AG with benchmark data)

* EREF: initial retrieval step + judiciously designed LLM- 2. Evaluate answering performance for samples
based evidence filtering technique 3. Create preference data for DPO training:

 AG: answers based on rewritten question + evidence For QU: samples preferred where answer in

* Trained LLM adapters for each subtask evidence AND final answer correct

For ERF: evidence set preferred that leads to
CHALLENGES FOR TRAINING correct answer
* No intermediate supervision data (for QU and ERF) 4. Additional SFT training data for AG based on

» Relying on human feedback is expensive generated samples

EXPERIMENTAL RESULTS
« On ConvMix benchmark * All pipeline stages contribute:
(over KG + text, 5 domains) highest performance with all three components
. PRAISE achieves new SOTA performance (+15.5%)  PRAISE retains high answer presence in top-50:

Initial:  AP@500=73% — AP@50=49%

* Pipeline-based better than end-to-end LLMs PRAISE: AP@500=77%— AP@50=76%
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